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Abstract— Evolutions in artificial intelligence (AI) techniques and their applications to physics have made it feasible to develop and implement new  

modeling techniques for high-energy interactions. In particular, AI techniques of artificial neural network (NN) implement more effective models. The  
neural network (NN) model and parton two fireball model (PTFM) have been used to study the charged particles multiplicity distributions for antipro 

ton-neutron ( np  ) and proton-neutron ( np ) collisions at different lab momenta. The neural network model performance was also tested at  

non-trained space (predicted) and matched them effectively. The trained NN shows a better fitting with experimental data than the PTFM calcula 
tions. The NN simulation results prove a strong presence modeling in hadrons collisions. 

 
      Index Terms— Neural Network Model; Parton Model; Multiparticle Production. 

——————————      —————————— 

1 INTRODUCTION                                                                     
he validity of the mathematical treatment and assump-
tions comes from the agreement between the theoretical 

results and corresponding outcomes from experimental mea-
surements. The closest is this agreement the successful is a 
certain modeling. Models are provided for the hadron struc-
ture [1-3]. These include the quark model [4], three fireball 
model [5], fragmentation model [6, 7], and many others. The 
theories and ideas concerning multiparticle production go 
back to the late of 1930s with a significant interlude at Fermi's 
statistical theory of particle production [8]. Multiparticle pro-
duction can be also modeled and described efficiently by 
studying the multiplicity distribution [9]. Several methods 
exist which investigate the multiplicity distribution of particles 
at high energy [10-13]. Among these are the multiplicity scal-
ing [10, 11], the statistical boot strap model [12], the two 
sources model [14], the negative binomial distribution [15], 
fireballs [16], strings [17], quark gluon plasma [18, 19] and 
many others. 
    Parallel to the theoretical approach based on different 
views, development in the artificial intelligence (AI) field has 
given the neural networks a strong presence in high-energy 
physics [20-22]. Neural networks are composed of simple in-
terconnected computational elements operating in parallel. 
These artificial neural networks (ANNs) are trained, so that a 
particular input leads to a specific target output. The objective 

of this paper is to extract the multiplicity distribution of 
charged particles for np   and np collisions at different 
lab momenta using PTFM and NNM. Section 2 presents par-
ton two fireball model PTFM at high energies. Section 3 pro-
vides the multiparticle production in proton-neutron and an-
tiproton-neutron collisions using PTFM. The NN model is de-
scribed in Sections 4, 5. The results and conclusion of both 
models are explained in Section 6. 

2 PARTON TWO FIREBALL MODEL (PTFM) 
     According to the parton two fireball model [23-25], np   
and np interaction will be characterized by the impact pa-
rameter and the corresponding overlapping volume. Let us 
assume that the two interacting hadrons at rest are spheres 
each of radius (R). Therefore, the two colliding particles can 
interact strongly when the impact parameter is in the region 
from 0 → 2R. Therefore, the statistical probability of any im-
pact parameter (b) within an interval (db) is given by 

              2R 2
P(b)db bdb                                              (1) 

Let us use a dimensionless impact parameter, X defined as, 
R2bX  . Then, Eq. (1) can be rewritten as  

 dX 2X dX P(X)                                (2) 
Where 1X0      
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Now we employ the overlapping volume, V(b) as a clean cut 
[26] as  
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In terms of the dimensionless impact parameter (X), the over-
lapping volume V(X) can be given by  
 

                       ).X 1.255X 1.-0.75X-(1 V V(X) 32
0  (4)  

                                                                                                                                                                                                                                                 
Then the fraction of partons, Z(X)participating in the interac-
tion may be written as, 
 
           ). 1.25X+5X 1.-0.75X-(1 =

V
)(  = Z(X) 32

0

XV             (5)                                                                                                   
 
According to Eq. (2) and Eq. (5), the Z -function distribution 
can be given by,  
 
P(Z) dZ=2 X dX (-2.4375 X - 0.75 X-1 +7.125 X + 0.75 X2 - 9.375    

               X3 + 4.687 X4) -1                                                                 (6)   

where,     1Z0     
From Eqs. (2, 5) and using least square fitting technique 
(LSFT), Z -function distribution can be written in the follow-
ing form, 

                           dZZCdZZP k
k
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)(                         (7)  

      
Where, kC (k = -1, 0, 1, 2, 3) are free parameters to be calculated 
to produce a fitting between Eq. (6) and the curve drown from 
Eq. (7). From such fitting procedure the obtained values for 

kC are, 
-1.823. C and 3.228 C -2.65, C 1.21,C 0.089, 32101 C  

3 MULTIPARTICLE PRODUCTION IN np  AND np  
COLLISIONS 

     After the collision takes place, the partons within the over-
lapping volume stop in the center of mass system (CMS); their 
kinetic energy (K.E.) will be changed into excitation energy to 
produce two intermediate states (fireballs). The produced fire-
balls will radiate the excitation energy into a number of newly 
created particles, which are mostly pions. We assume that 
each fireball will decay in its own rest frame into a number of 
pions with an isotropic angular distribution. The number of 
created pions will be defined by the fireball rest mass (Mf) and 
the mean energy consumed in the creation of each pion (ε). 
The energy available for the creation of pions from each fire-
ball will be, 

             )(XZTmM f                                  (8)  
Where, 0T  is the kinetic energy of the incident proton in CMS 
and given by, 

20
QT  , Q  is the total available kinetic energy 

in CMS. 
The number of created pions ( 0N ) from each fireball will be 
given by, 

                
 2

)()()( 0 QXZTXZZn                      (9) 
 
It is clear that Eq. (9) gives the total number of created par-
ticles (charged and neutral) as a function of the dimensionless 

impact parameter. 
     To get the charged particles multiplicity distribution, we 
have to assume some distribution for the charged particles 
(nch) in the final state of the interaction at any impact parame-
ter out from the total created particles (n0). We considered the 
new created particles from each fireball can be divided into a 
number of pairs. Each pair will be either charged or neutral to 
satisfy the charge conservation. 
     From equations (7) and (9), the total number of created par-
ticles distribution, )( nP  can be calculated from the follow-
ing equation,  
  
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We assume a binomial and Poisson distributions for the prob-
ability distribution for the creation of charged pion pairs from 
one fireball of the forms, 
1) Binomial Distribution of the form,                                 
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2) Poisson Distribution of the form, 
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where, N is the number of pairs of created particles from one 
fireball (N=n0/2), n2 the number of pairs of charged pions , p 
the probability that the pair of pions is charged, q the proba-
bility that the pair of pions is neutral. 
Therefore, the charged particles distribution from one fireball 
will be given by, 
 


0

)()()( 02n
nPnn                          (13) 

     
Then, the charged particles multiplicity distribution from the 
two fireballs will be,  
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We assume that   increases with the multiplicity size, (n0), as, 

ban  0  
where, a and b are free parameters which can be taken to be, 
a= 0.01, b = 0.35 for np   and a = 0.01, b = 0.44 for np . 
     Charged particles multiplicity distributions have been cal-
culated at PL=50, 80 GeV/c for np  and PL=100, 200, 400 
GeV/c for np which are represented in fig 1. a, b, c, d and e 
along with the corresponding experimental data [27-30].  

4   ARTIFICIAL NEURAL NETWORKS (ANNS) 
An ANN is made up of a number of simple and highly in-

terconnected computational elements. There are many types of 
ANNs, but all of them have three things in common: individ-
ual neurons (processing elements), connections (topology), 
and a learning algorithm. The processing element calculates 

IJSER

http://www.ijser.org


International Journal of Scientific & Engineering Research, Volume 3, Issue 8, August-2012                                                                                                            3                                 
ISSN 2229-5518 
 

IJSER © 2012 
http://www.ijser.org  

the neuron transfer function of the summation of weighted 
inputs. A simple neuron structure is shown in the fig 2. The 
neuron transfer function, f , is typically step or sigmoid func-
tion that produces a scalar output ( n ) as in Eq. (15).  

 
bIwfn

i ii                                                    (15) 
 

where iI , iw , b  are the i th input, the i th weight and b the 
bias respectively. 
     A network consists of one or more layers of neurons. A 
layer of neurons is a number of parallel neurons. These layers 
are configured in a highly interconnected topology. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

5   TRAINING OF THE H-H-ANN 
Neural network can be trained to perform a particular 

function by adjusting the values of the connections (weights) 
between elements. Training in simple is to make a particular 
input leads to a specific target output. The weights are ad-
justed, based on a comparison of the output and the target, 
until the network output matches the target. Typically many 
such input/target pairs are used, in this supervised learning, 
to train a network. 

The proposed ANNs in this paper was trained using Le-
venberg–Marquardt optimization technique. This optimiza-
tion technique is more powerful than the conventional gra-
dient descent techniques [31-35].  
     The Levenberg–Marquardt updates the network weights 
using the following rule: 
 

eJIJJW TT 1)(    
where J is the Jacobian matrix of derivatives of each error 
with respect to each weight,  is a scalar, changed adaptively 
by the algorithm and e  is an error vector. 
     The only requirement for this method is a considerably 
large memory for large problems. The initial training weights 
were also chosen using the Nguyen–Widrow random genera-
tor in order to speed up the training process [31-35]. 

 

“Figure 2. Neuron model” 
 

 

 

 

 

 

“Figure 1. Normalized multiplicity distribution of charged particles 
nch for np   and np collisions calculated according to the 

parton two fireball model as parameterized by Poisson and bi-
nomial distribution using Eq.(14) in comparison with the corres-

ponding experimental data at  a) 50,  b) 80, c) 100, d) 200 and e) 
400 GeV/c” 
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6   RESULTS AND CONCLUSION  
    The charged particles multiplicity distributions using PTFM, 
Eq. (14), are calculated for np   and np assuming  giv-
en by: 

ban  0  
where, a = 0.01, b = 0.35 for np   and a = 0.01, b = 0.44 
for np . The results of these calculations are represented in 
fig 1. a, b, c, d and e along with the experimental data [27-30] 
which show fair agreement with the corresponding experi-
mental data. It can be seen from fig 1. that the emission of sec-
ondary particles is assumed to follow a binomial distribution.  
     We have also modified our calculations using ANN model 
and these calculations are represented in fig 3. a, b, c, d and e 
along with the same experimental data [27-30]. We have also 
found some considerably variations in comparison with fig 1. 
Using the input-output arrangement, different network confi-
gurations were tried to achieve good mean squared error 
(MSE) and good performance for the network. It consists of an  
input layer (PLab, nch), one hidden layers of 10 neurons, respec-
tively, and an output layer consisting of one neuron P (nch). 
 
     
      

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     The transfer functions were chosen to be a tansigmoid func-
tion for the hidden layer and a pureline function for the out-
put layer, the trained NN model shows almost exact fitting. It 
is worth mentioning that the NN training data did not include 
the experimental data at PL =400 GeV/c. This means that the 
NN model, not only simulated the trained observations (fig 3) 
but also predicted the multiplicity distribution of charged 
pions for untrained observations as shown in fig 4. Then, the 
ANN technique is able to exactly model for multiplicity distri-
bution at lab momenta for different beams in hadrons colli-
sions. 
 
 
APPENDIX   
Where net is 2-10-1 (input-i-j-k-output) and the equation is  
 
[(net: LWi (tansigmoid (pureline (net: I A + net: bi) + net: b))))]  
 
Where, A is the input consists of two elements  
net: I : linked weights bet. the input layer and 1st hidden layer, 
net: LW: linked weights bet. 3rd input layer and output layer, 
net: bi: biases for the hidden layer, 
net: b : biases for output layer. 

 

 

 

“Figure 3. Comparison between the experimental and simulated 
multiplicity distribution of pions )( chnP for np  collisions at a) 50, 

b) 80 GeV/c and np collisions at, c) 100,   d) 200 GeV/c:             
(—) NN model, (……) PTFM model, (O) experimental data”. 

 

“Figure 4. Comparison between the experimental and predicted 
multiplicity distribution of pions )( chnP for np collisions at 

400 GeV/c: (—) NN model, (……) PTFM model, (O) experimental 
data”. 
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I(input, hidden)(2, 10) = 
 









 0.0420 1.9331 0.6290 4.8338- 3.8578- 1.9219 1.7683- 3.8754 1.8749- 0.4856-
 4.0002 3.3804 2.3966 0.1847- 2.9577- 4.0100 2.5606- 3.6549- 3.4592 4.7630

 
 
LW (hidden, ouput)(10,1) =                                
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b (10,1) = 
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bi (output) = -1.2991 
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